Blue Carbon

BLUE CARBON

 

Blue carbon is the carbon captured by the world's oceans and coastal ecosystems. The carbon captured by living organisms in oceans is stored in of biomass and sediments from mangroves, salt marshes, seagrasses and potentially algae.

Restoration of mangrove forests, seagrass meadows, marshes, and kelp forests has been implemented in many countries. These restored ecosystems have the potential to act as carbon sinks. Restored seagrass meadows were found to start sequestering carbon in sediment within about four years. This was the time needed for the meadow to reach sufficient shoot density to cause sediment deposition. Similarly, mangrove plantations in China showed higher sedimentation rates than barren land and lower sedimentation rates than established mangrove forests. This pattern in sedimentation rate is thought to be a function of the plantation's young age and lower vegetation density.

 

 

 

 

Algae cultivation by SAFE in coastal Bengal

Both macroalgae and microalgae are being investigated as possible means of carbon sequestration. Because algae lack the complex lignin associated with terrestrial plants, the carbon in algae is released into the atmosphere more rapidly than carbon captured on land. Algae have been proposed as a short-term storage pool of carbon that can be used as a feedstock for the production of various biogenic fuels. Microalgae are often put forth as a potential feedstock for carbon-neutral biodiesel and biomethane production due to their high lipid content. Macroalgae, on the other hand, do not have high lipid content and have limited potential as biodiesel feedstock, although they can still be used as feedstock for other biofuel generation. Macroalgae have also been investigated as a feedstock for the production of biochar. The biochar produced from macroalgae is higher in agriculturally important nutrients than biochar produced from terrestrial sources. Another novel approach to carbon capture which utilizes algae is the Bicarbonate-based Integrated Carbon Capture and Algae Production Systems (BICCAPS) developed by a collaboration between Washington State University in the United States and Dalian Ocean University in China. Many cyanobacteria, microalgae, and macroalgae species can utilizecarbonate as a carbon source for photosynthesis. In the BICCAPS, alkaliphilic microalgae utilize carbon captured from flue gases in the form of bicarbonate. In South Korea, macroalgae have been utilized as part of a climate change mitigation program. The country has established the Coastal CO2 Removal Belt (CCRB) which is composed of artificial and natural ecosystems. The goal is to capture carbon using large areas of kelp forest.